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4 Appendix 8

1 Overview

1.1 Introduction
The goal of this note is to summarize [Har13, V.5], birational transformations. I also reference [Bea96], specifically
with regards to the proof of [Bea96, Theorem II.7], “elimination of indeterminancy.” The main goal of this note is to
explain [Har13, V.5], so I will mostly follow that subchapter.

1.2 Main results
The main results are detailed in §3. For reference, the two main results are:

Theorem 1.1 (Factorization of birational maps of surfaces, 3.1): Let 𝑇 : 𝑋 ′ d 𝑋 be a birational map of
surfaces. Then 𝑇 can be written as the composition of blowups (at points) and their inverses. Explicitly, there
exists a surface 𝑆 and maps 𝜂 : 𝑆 → 𝑋 ′, 𝜓 : 𝑆 → 𝑋 such that both 𝜂,𝜓 are a finite sequence of blowups, and
they make the following diagram commute:

𝑆

𝑋 ′ 𝑋

𝜂

𝑇

𝜓 .

This allows us to describe every birational map of surfaces via blowups.
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Theorem 1.2 (Castelnuovo’s criterion, 3.3): Let 𝑌 be a curve on a (smooth projective) surface 𝑋 , such that
𝑌 � P1 and 𝑌 2 = −1. Then 𝑋 � Bl𝑝 𝑋0 for some (smooth projective) surface 𝑋0, such that 𝑌 is the exceptional
curve of this blowup.

This allows us to understand exactly when we can write surfaces as blowups of other surfaces.

1.3 Summary
Let me summarize the basic ideas that are going on. We wish to study birational maps, which are not defined
everywhere, hence are rather difficult to work with. Theorem 2.14 allows us to regard rational maps from surfaces as
two genuine morphisms, albeit with one inverted. This is very useful because we now can replace a birational map,
which is only defined on an open set of the source, with maps which are genuine morphisms of projective varieties.
From here, will see that every birational morphism of surfaces is actually a sequence of blowups, which further adds
to our explicit understanding of birational maps of surfaces - now we understand them as a sequence of blowups
and their inverses. So the theory of birational maps of surfaces boils down to blowing up points. We can always
blow up; it only remains to ask when we can blow down, i.e., the surface is the blowup of another surface. This will
be answered precisely by Castelnuovo’s theorem (3.3), which will complete the general picture.

2 Setup

2.1 Definitions
Let 𝑋 and 𝑌 be projective varieties.

Definition 2.1: A rational map 𝑇 : 𝑋 d 𝑌 is the data of a dense open subset 𝑈 ⊂ 𝑋 and a morphism
𝜑 : 𝑈 → 𝑌 .

Definition 2.2: A birational map𝑇 : 𝑋 d 𝑌 is a rational map such that the morphism 𝜑 : 𝑈 → 𝑌 induces an
isomorphism on some dense open subset 𝑉 ⊂ 𝑈 .

In other words, a birational map is a map which need not be defined on the entire source, only almost everywhere,
and gives an isomorphism between dense open subsets of the source and the target. Note that the𝑈 in this definition
is not necessarily the open set mapped isomorphically onto its image; it is merely an open set for which𝑇 is defined
on.

Remark 2.3: An equivalent condition to inducing an isomorphism on a dense open subset is to say that 𝜑𝑇
induces an isomorphism of function fields 𝐾 (𝑋 ) ∼−→𝐾 (𝑌 ), i.e., an isomorphism on the stalks of the generic
points.

Definition 2.4: A birational morphism 𝑇 : 𝑋 → 𝑌 is a birational map which is a legitimate morphism, i.e.,
defined everywhere (so we can take𝑈 to be all of 𝑋 ).

This may be slightly confusing; a birational map may not be defined everywhere, while a birational morphism is
defined everywhere. The difference in notation will be d vs. →. Both have to be birational, i.e., “generically an
isomorphism.” A birational map to a normal variety also satisfies the following:

Proposition 2.5: Let 𝑓 : 𝑋 → 𝑌 be a birational morphism of projective varieties, with 𝑌 normal. Then 𝑓∗O𝑋 =

O𝑌 .

Proof. The problem is local on𝑌 , so assume𝑌 = Spec𝐴 and𝑋 = Spec𝐵. Then 𝑓∗O𝑋 = 𝐵 as an𝐴-algebra (under the
map 𝑓 ♯ : 𝐴→ 𝐵). Therefore 𝐵 is a finitely generated 𝐴-algebra, and both 𝐴, 𝐵 are integral domains with the same
field of fractions (as 𝑓 is birational). Since 𝑌 is normal, 𝐴 is integrally closed, so 𝐵 = 𝐴, and hence 𝑓∗O𝑋 = O𝑌 . □
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Now, a general birational map may not be defined everywhere. If we have (𝑈 ,𝜑) and (𝑉 ,𝜓 ) both representing the
birational map 𝑇 : 𝑋 d 𝑌 , then we can glue them to obtain a map 𝛾 : 𝑈 ∪𝑉 → 𝑌 representing 𝑇 . As such, there is
a largest open set𝑈 ⊂ 𝑋 for which 𝑇 is representated by a morphism𝑈 → 𝑌 .

Definition 2.6: We say that 𝑇 : 𝑋 d 𝑌 is defined at the points of 𝑈 . We also say that 𝑋 − 𝑈 , the points
where 𝑇 cannot be defined, are the fundamental points of 𝑇 .

In particular, birational morphisms have no fundamental points.

Example 2.7: Let 𝑝 ∈ 𝑋 , and let 𝜋 : Bl𝑝 𝑋 → 𝑋 be the blowup of 𝑋 at 𝑝 . Then 𝜋 is a birational morphism,
hence has no fundamental points. On the other hand, 𝜋−1 : 𝑋 d Bl𝑝 𝑋 is a birational map, and can be defined
everywhere except at 𝑝 ∈ 𝑋 . It follows that 𝑝 is the only fundamental point of the birational map 𝜋−1.

Although a birational map𝑇 : 𝑋 d 𝑌 may not be defined at some points in 𝑋 , we can still assign it a subset of 𝑌 . In
the case of blowing up a point 𝜋 : Bl𝑝 𝑋 → 𝑋 , we wish for this subset associated to 𝑝 ∈ 𝑋 under the birational map
𝜋−1 to be the exceptional divisor 𝐸.

Definition 2.8: Let 𝑇 : 𝑋 d 𝑌 be a birational map, represented by 𝜑 : 𝑈 → 𝑌 , where 𝑈 is the maximal open
set for which 𝑇 is defined. Let Γ0 ⊂ 𝑈 × 𝑌 ⊂ 𝑋 × 𝑌 be the graph of 𝜑 . Then we call the closure Γ B Γ0 ⊂ 𝑋 × 𝑌
the graph of𝑇 ; it comes equipped with projection maps pr𝑋 , pr𝑌 to 𝑋 and 𝑌 . To a subset 𝑍 ⊂ 𝑋 , we define the
total transform of 𝑍 to be

𝑇 (𝑍 ) B pr𝑌 (pr−1𝑋 (𝑍 )) .

It’s easy to check that for points 𝑝 ∈ 𝑋 at which 𝑇 is defined, then 𝑇 (𝑝) = 𝜑 (𝑝). In other words, the total transform
agrees with the map wherever it’s already defined

Example 2.9: Let 𝜋 : Bl𝑝 𝑋 → 𝑋 be the blowup of 𝑋 at 𝑝 . Then 𝜋−1 has a single fundamental point 𝑝 . At this
point, 𝜋−1 (𝑝) = 𝜋−1 (𝑝) = 𝐸,

2.2 Preliminary results
Let’s first establish some preliminary results to understand fundamental points and total transforms.

Proposition 2.10: Suppose 𝑇 : 𝑋 d 𝑌 is a birational map of projective varieties, and 𝑋 is normal. Then the
fundamental points of 𝑇 form a closed subset of codimension ≥ 2.

Proof. Since 𝑇 induces an isomorphism of function fields, it must be defined at the generic point of 𝑋 . Now
any codimension 1 point 𝑝 ∈ 𝑋 necessarily will have its local ring O𝑋,𝑝 be a discrete valuation ring in 𝐾 (𝑋 ).
By the valuative criterion of properness (4.1), it follows that 𝑇 must also be defined at 𝑃 (here we use that 𝑌 is
projective). □

Corollary 2.11: Let𝑇 : 𝑋 d 𝑌 be a birational map of projective surfaces, with𝑋 normal. Then the fundamental
points of 𝑋 are a finite set of points.

We now know that the fundamental points form a “small” subset of the source. We’d also like to understand what
the total transform looks like. Wherever 𝑇 is defined, we know that the total transform is just the image of that
subset as a morphism; the question is what happens to the fundamental points.

Proposition 2.12: Let 𝑇 : 𝑋 → 𝑌 be a birational transformation of projective varieties, with 𝑋 normal. If 𝑝 is
a fundamental point of 𝑇 , then the total transform 𝑇 (𝑝) is connected and dimension ≥ 1.

Proof. Let 𝑝 ∈ 𝑋 be a fundamental point and let Γ be the graph of 𝑇 . Then pr−1
𝑋
(𝑝) ⊂ Γ is mapped isomorphically

onto 𝑇 (𝑝) by pr𝑌 . Now pr𝑋 : Γ → 𝑋 is a birational projective morphism, so Zariski main theorem (4.3) implies

3



that pr−1
𝑋
(𝑝) is connected; it follows that so too is 𝑇 (𝑝).

It suffices now to show that pr−1
𝑋
(𝑝) is dimension ≥ 1. Suppose not, that it was dimension 0. The key is that

upper-semicontinuity of fiber dimensions implies that we must have an open neighborhood𝑉 ∋ 𝑝 in 𝑋 where the
fibers under pr𝑋 : Γ → 𝑋 are all dimension 0. But 𝑉 is normal, and pr𝑋 : pr−1

𝑋
(𝑉 ) → 𝑉 is a finite morphism,

so this must be an isomorphism; since 𝑇 is defined on an open dense subset of 𝑋 , which must intersect 𝑉 on an
open dense subset, it follows that 𝑇 must be defined on all of 𝑉 , contradicting that 𝑝 ∈ 𝑉 is a fundamental point.
Therefore by contradiction, we find that 𝑇 (𝑝) has dimension ≥ 1. □

Intuitively, this is just saying that if the fiber of a fundamental point was indeed dimension 0, then it must be
connected, hence a single point. But the normality of 𝑋 implies that this single point must also be reduced, so in fact
we could have just defined the birational map at this point.

Remark 2.13 (Characterization of fundamental points): Another way to understand fundamental points
are exactly the points for which the total transform is large. The total transform of a point where 𝑇 is defined is
just a point; the total transform of a fundamental point is a connected, dimension ≥ 1 subvariety.

2.3 Elimination of indeterminancy
This is the main fact which allows us to “factor” a rational map into a morphism and an inverse of another mor-
phism.

Theorem 2.14 (Elimination of indeterminancy): Let 𝜙 : 𝑆 d 𝑋 be a rational map from a surface 𝑆 to a
projective variety 𝑋 . Then there exists a surface 𝑆 ′ such that the diagram

𝑆 ′

𝑆 𝑋

𝜂 𝑓

𝜙

commutes. Furthermore, 𝜂 is constructed explicitly as a finite sequence of blowups (of points).

Proof. Since 𝑋 is projective, we have a closed embedding 𝑋 ↩→ P𝑁 for some projective space P𝑁 (and also require
that 𝜙 (𝑆) does not lie in a hyperplane of P𝑁 , otherwise just take that hyperplane, which is P𝑁−1). Since 𝜙 is
rational, it’s defined on a dense open subset of 𝑆 . We will see that 𝜂 is a finite sequence of blowups; in particular,
𝑆 ′ has a dense open subset mapped isomorphically under 𝜂 to a dense open subset of 𝑆 , and intersecting this with
the open set on which 𝜙 is defined, we have an open subset𝑈 in 𝑆 ′ and 𝑆 identified under 𝜂, all of which is mapped
to 𝑋 ⊂ P𝑁 . Since 𝑓 is continuous, then 𝑓 (𝑆 ′) must lie in the closure of this open set, which lies in 𝑋 ⊂ P𝑁 , so it
suffices to just define the map 𝑓 : 𝑆 ′ → P𝑁 .
Now let’s define 𝑆 ′. First, 𝜙 : 𝑈 → 𝑋 ↩→ P𝑁 is defined by some linear system 𝑃 ⊂ |𝐷 | with no fixed component
(i.e., the base points form a subset of dimension 0) This can be seen again by the valuative criterion of properness
(4.1), as 𝜙 is defined at the generic point, hence at all points of codimension 1; therefore the base points must
be codimension 2 in a surface, which is just a finite set of points. If 𝑃 has no base point, then 𝜙 is a legitimate
morphism, and we can just take 𝑆 ′ = 𝑆 . Otherwise, assume that 𝑃 has a base point 𝑥 ∈ 𝑆 .
Then we can take the blowup 𝜖 : 𝑆1 = Bl𝑥 𝑆 → 𝑆 . Now 𝜖∗𝑃 ⊂ |𝜖∗𝐷 | cannot have any fixed components away from
𝜖−1 (𝑥), as 𝜖 is an isomorphism away from 𝜖−1 (𝑥), and by hypothesis 𝑃 had no fixed components. If 𝜖∗𝑃 indeed has
a fixed component, then it must be the exceptional curve 𝐸 = 𝜖−1 (𝑥), with some multiplicity𝑚 ≥ 1. Then just take
the linear system 𝑃1 B 𝜖∗𝑃 −𝑚𝐸 ⊂ |𝜖∗𝐷 −𝑚𝐸 |; this now has no fixed component, and away from the exceptional
curve, this induces the exact same map that 𝑃 did. In other words, 𝑃 induced a perfectly reasonable map on most
of 𝑆 ; where there is an issue (namely, a base point), we simply blow up that point. Now by blowing up, we have
the same map induced by 𝜖∗𝑃 away from the exceptional curve, so any new issues stay confined to the exceptional
locus, which we rectify by just subtracting the fixed-component-multiplicities off without changing the map away
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from the exceptional curve.
𝑆1 − 𝐸

𝑆 − 𝑥 P𝑁
𝑃

𝑃1 .

Nowwe get a rational map𝜙1 : 𝑆1 d P𝑁 . If this has no base points, we are done. If it does not, we blow up at a base
point again. We just need to see that this terminates. The reason that this terminates is because each 𝑃𝑖 is a linear
system in |𝐷𝑛 | = |𝜖∗𝑛𝐷𝑛−1−𝑚𝑛𝐸𝑛 |. But since each 𝑃𝑛 has fixed component, then𝐷2

𝑛 ≥ 0, but𝐷2
𝑛 = 𝐷2

𝑛−1−𝑚2
𝑛 < 𝐷2

𝑛−1,
so this is a strictly decreasing sequence, hence it must terminate.
We therefore eventually arrive at a surface 𝑆 ′, which is produced from 𝑆 by a finite sequence of blowups (at points),
and equipped with a linear system 𝑃 ′ which has no base points. This gives us a map 𝑆 ′ → P𝑁 , and its image lands
in 𝑋 , hence a legitimate map 𝑆 ′ → 𝑋 . □

This result gives us a way to write rational maps, and hence birational maps, as two actual morphisms, albeit via the
inverse of one of them.

2.4 Universal property of blowing up
The other crucial fact we need characterizes the blowup.

Theorem 2.15 (Universal property of blowups): Let 𝑓 : 𝑋 ′ → 𝑋 be a birational morphism of smooth pro-
jective surfaces. Let 𝑝 be a fundamental point of 𝑓 −1. Then 𝑓 factors through the blowup 𝜋 : Bl𝑝 𝑋 → 𝑋 :

𝑋 ′

Bl𝑝 𝑋

𝑋

𝑓

∃!

𝜋

.

Proof. Let us call the induced birational map 𝑇 B 𝜋−1 ◦ 𝑓 : 𝑋 ′ d Bl𝑝 𝑋 . If 𝑇 has no fundamental points, then we
are done. If 𝑇 has a fundamental point 𝑞, then clearly 𝑓 (𝑞) = 𝑝 ∈ 𝑋 , since 𝑓 is defined everywhere but 𝜋−1 has 𝑝
as its unique fundamental point, so any fundamental point of 𝑋 necessarily lies over 𝑝 ∈ 𝑋 . Then Proposition 2.12
implies that the total transform𝑇 (𝑞) is connected and dimension ≥ 1 in Bl𝑝 𝑋 , while also lying over 𝑝; this means
that it must be the exceptional curve 𝐸 = 𝜋−1 (𝑝) ⊂ Bl𝑝 𝑋 . So we have 𝑇 (𝑞) = 𝐸.
Now Corollary 2.11 implies that 𝑇 −1 : Bl𝑝 𝑋 d 𝑋 ′ has finitely many fundamental points. In particular, since 𝐸
is dimension 1, most points of 𝐸 must be defined for 𝑇 −1, even though 𝐸 is the total transform of a fundamental
point of𝑇 ! Now we can choose a point in 𝐸 which is not a fundamental point for𝑇 −1 and check local coordinates;
it will produce a contradiction that 𝐸 is the total transform of a fundamental point of 𝑇 . □

Corollary 2.16 (Birational morphisms of surfaces are a sequence of blowups): Let 𝑓 : 𝑋 ′ → 𝑋 be a
birational morphism of surfaces. Let 𝑁 be the number of irreducible curves in 𝑋 ′ which are contracted to a
point in 𝑋 . Then 𝑁 is finite, and 𝑓 is the composition of exactly 𝑁 blowups (at points).

Proof. The basic idea is that every time we use the universal property of blowups (2.15) to factor 𝑓 into a map to a
blowup, then we take care of exactly one curve, and the remaining irreducible curves are contracted in the induced
map to this blowup.
If 𝑓 −1 has no fundamental points, then 𝑓 is an isomorphism, so 𝑁 = 0 and the statement is true. Suppose 𝑓 −1
has fundamental points; the curves which are contracted to a point must map to a fundamental point, since all
non-fundamental points have at most a single point in their preimage. Then Corollary 2.11 tells us there are only
finitely many fundamental points. Furthermore, the preimage of each fundamental point of 𝑓 −1 is a closed subset
of 𝑋 ′, hence can only have finitely many irreducible components, so the set of curves which are contracted to a
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point is finite.
Now let 𝑝 ∈ 𝑋 be a fundamental point of 𝑓 −1. Then the universal property of blowing up (2.15) tells us that 𝑓
factors through 𝜋 : Bl𝑝 𝑋 → 𝑋 , i.e., 𝑓 = 𝑓1 ◦𝜋 for some 𝑓1 : 𝑋 ′ → Bl𝑝 𝑋 . Now we need to show that the number of
irreducible curves contracted by 𝑓1 is 𝑁 − 1. First off, any curve lying over points which are not 𝑝 are clearly still
contracted, as 𝜋 is an isomorphism away from the exceptional locus and 𝑝 . Now consider the curves 𝐶 lying over
𝑝 . Then since 𝑓 (𝐶) = 𝑝 , it follows that 𝑓1 (𝐶) ⊂ 𝜋−1 (𝑝) = 𝐸, the exceptional locus. Either 𝑓1 (𝐶) is a point, in which
case, it’s still contracted, or 𝑓1 (𝐶) = 𝐸. We need to show that this latter case happens for exactly one curve 𝐶 . But
Corollary 2.11 tells us that 𝑓 −11 has only finitely many fundamental points, so 𝑓 −11 is defined on most of 𝐸, and in
fact on a dense open subset of 𝐸, 𝑓 −11 is an isomorphism. So we can conclude that there is a unique curve being
mapped to 𝐸, and this curve is the closure of 𝑓 −11 (𝐸) (namely, the dense open subset of 𝐸 for which 𝑓 −11 is defined).
Therefore 𝑓1 contracts exactly one less curve than 𝑓 does. Continuing in this way, we see that 𝑓 must factor into
exactly 𝑁 blowups. □

Remark 2.17: This is already false for smooth projective varieties 𝑋,𝑋 ′ of dimension ≥ 3. Let 𝑓 : 𝑋 ′ → 𝑋 be
the blowup of 𝑋 along a smooth curve. Then every point 𝑝 ∈ 𝐶 is a fundamental point of 𝑓 −1, since none of
them have a single preimage. But 𝑓 cannot possibly factor through the blowup at 𝑝 , since the exceptional locus
of such a blowup is dimension 2, but 𝑋 ′ was a blowup along a curve, hence 𝑓 −1 (𝑝) is dimension 1.

So we know that any birational morphism of surfaces will factor as a finite sequence of blowups. The question to be
answered is what birational maps will look like; these are trickier, since they’re not actual morphisms.

3 Main results

Here are our two main results.

3.1 Factorization of birational maps of surfaces

Theorem 3.1 (Factorization of birationalmaps of surfaces): Let𝑇 : 𝑋 ′ d 𝑋 be a birational map of surfaces.
Then 𝑇 can be written as the composition of blowups (at points) and their inverses. Explicitly, there exists a
surface 𝑆 and maps 𝜂 : 𝑆 → 𝑋 ′,𝜓 : 𝑆 → 𝑋 such that both 𝜂,𝜓 are a finite sequence of blowups, and they make
the following diagram commute:

𝑆

𝑋 ′ 𝑋

𝜂

𝑇

𝜓 .

Proof. First, the elimination of indeterminancy (2.14) allows us to factor 𝑇 into the diagram

𝑆

𝑋 ′ 𝑋

𝜂

𝑇

𝜓 .

By construction, 𝜂 : 𝑆 → 𝑋 ′ is already a finite sequence of blowups. It remains to see that 𝜓 is also a sequence of
blowups. But we know that𝜓 : 𝑆 → 𝑋 is a birational morphism of surfaces, so Corollary 2.16 tells us that𝜓 is also
a sequence of blowups. □

Corollary 3.2:The arithmetic genus of a nonsingular projective surface is a birational invariant.

Proof. Arithmetic genus is unchanged by blowups at points. □
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3.2 Castelnuovo’s criterion
The universal property of blowups (2.15) tells us that birational morphisms factor as blowups, contracting curves to
the fundamental points of the inverse map. Castelnuovo’s criterion will tell us when we can realize that a surface is
indeed a blowup.

Theorem 3.3 (Castelnuovo’s criterion): Let𝑌 be a curve on a (smooth projective) surface𝑋 , such that𝑌 � P1
and 𝑌 2 = −1. Then 𝑋 � Bl𝑝 𝑋0 for some (smooth projective) surface 𝑋0, such that 𝑌 is the exceptional curve of
this blowup.

Proof. The basic idea is to construct 𝑋0 by taking a very ample divisor𝐻 on 𝑋 and modifying it slightly, so that we
get a map 𝜑 : 𝑋 → P𝑛 which is an isomorphism outside of 𝑌 , but contracts 𝑌 , thereby realizing 𝑋 as the blowup
of 𝜑 (𝑋 ).
In order to produce an embedding 𝑋 ↩→ P𝑁 , we need a very ample divisor 𝐻 , so that the linear system |𝐻 | has no
base points. But we don’t want a true embedding; we want it to be an embedding on 𝑋 − 𝑌 , and then to contract
𝑌 . Therefore we modify the divisor as follows: since we want to leave 𝑋 − 𝑌 untouched, we take 𝐷 B 𝐻 +𝑚𝑌 ,
where𝑚 = 𝐻 · 𝑌 . The reason for choosing this𝑚 will be explained shortly.
First, we need to check that this divisor 𝐷 indeed defines a map 𝑋 → P𝑁 . To do this, we need to check that the
linear system |𝐷 | has no base points. First, |𝐷 | = |𝐻 +𝑚𝑌 | ⊇ |𝐻 | +𝑚𝑌 , and |𝐻 | already has no base points on 𝑋 ,
hence |𝐻 | +𝑚𝑌 has no base points on 𝑋 − 𝑌 . This implies that |𝐷 | is base-point-free away from 𝑌 . To check that
it’s base-point-free on 𝑌 , we want to check that 𝐻 0 (𝑋,O𝑋 (𝐷)) ↠ O𝑋 (𝐷) |𝑦 for each 𝑦 ∈ 𝑌 . We can do this by
first noting that O𝑋 (𝐷) |𝑌 � O𝑌 (𝐷 · 𝑌 ) = O𝑌 � OP1 , which is globally generated, hence 𝐻 0 (𝑌,O𝑋 (𝐷) |𝑌 ) surjects
onto each stalk. It remains to see that 𝐻 0 (𝑋,O𝑋 (𝐷)) ↠ 𝐻 0 (𝑌,O𝑋 (𝐷) |𝑌 ). But this can be done by noting that
I𝑌 � O𝑋 (−𝑌 ) and using the short exact sequence

0→ O𝑋 (𝐻 + (𝑘 − 1)𝑌 ) → O𝑋 (𝐻 + 𝑘𝑌 ) → O𝑌 ((𝐻 + 𝑘𝑌 ) · 𝑌 ) → 0,

applying induction, and using the long exact sequence to see that 𝐻 1 (𝑋,O𝑋 (𝐷 − 𝑌 )) = 0.
Now that we have a legitimate morphism 𝑓 : 𝑋 → P𝑁 , we need to check that it has the desired geometric proper-
ties. First, by construction 𝑓 is an embedding on 𝑋 − 𝑌 . Now regarding 𝑌 , either 𝑓 (𝑌 ) is mapped isomorphically
onto its image, or𝑌 is contracted to a point. In the first case, 𝑓 (𝑌 ) would be an irreducible curve in P𝑁 , hence must
intersect every hyperplane 𝐹 , so 𝐹 · 𝑓 (𝑌 ) > 0. But 𝑓 ∗OP𝑁 (𝐹 ) � 𝑓 ∗OP𝑁 (1) � O𝑋 (𝐷), and 𝑓 ∗𝐹 · 𝑓 ∗ 𝑓 (𝑌 ) = 𝐷 ·𝑌 = 0,
contradiction. So 𝑓 must contract 𝑌 to a point.
It remains to check that the resulting variety 𝑓 (𝑋 ) is smooth. Clearly it’s smooth outside of 𝑓 (𝑌 ), since 𝑓 is an
isomorphism on 𝑋 − 𝑌 . So it remains to check the point 𝑓 (𝑌 ) ∈ 𝑓 (𝑋 ). Now we can check smoothness using the
formal function theorem, but that requires 𝑓 (𝑋 ) to be normal; so let’s go ahead and take the normalization 𝑋0 of
𝑓 (𝑋 ), and we get a unique induced map 𝑔 : 𝑋 → 𝑋0, which is still an isomorphism 𝑔 : (𝑋 −𝑌 ) ∼−→ (𝑋0 −𝑝), where
𝑝 is the image of 𝑌 . We know that 𝑔∗O𝑋 = O𝑋0 from Proposition 2.5 due to 𝑔 being birational and𝑋0 being normal.
So now we can apply the formal function theorem (4.4) and check the completion of the local ring �O𝑋0,𝑝 . Recall
that the completion of the local ring at a point 𝑝 is just a power series ring iff 𝑝 is a smooth point. So we compute
that �O𝑋0,𝑝 = lim←−−

𝑛

𝐻 0 (𝑌𝑛,O𝑌𝑛 ),

where 𝑌𝑛 is the infinitesimal neighborhood of 𝑌 in 𝑋 given by the ideal sheaf I𝑛
𝑌
. From here, it’s a matter of

computation: each𝐻 0 (𝑌𝑛,O𝑌𝑛 ) � 𝑘 [𝑥,𝑦]/(𝑥,𝑦)𝑛 , and the inverse limit of this is indeed 𝑘 [[𝑥,𝑦]], which is a power
series ring, hence 𝑝 is a smooth point of 𝑋0, and hence the entire variety 𝑋0 is nonsingular.
It remains to see that the map 𝑔 : 𝑋 → 𝑋0 is a blowup (or rather, blowdown). It’s clear that 𝑔 is a birational map
which contracts exactly one curve, hence by Corollary 2.16 it must be a single blowup, namely the blowup at the
point 𝑝 ∈ 𝑋0. It follows that 𝑋 is realized as the blowup of a smooth projective surface, with 𝑌 as the exceptional
locus. □

Remark 3.4:One can even show that𝑋0 = 𝑓 (𝑋 ), i.e., that 𝑓 (𝑋 ) was already normal, but it doesn’t really matter
in proving the result we want.
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3.3 Examples

Example 3.5: Let 𝜋 : 𝑋 → 𝐶 be a geometrically ruled surface; this just means that 𝐶 is an irreducible curve,
and 𝜋 : 𝑋 → 𝐶 is a proper surjective map such that all of the fibers are P1, and there exists a section 𝜎 : 𝐶 → 𝑋 .
Let 𝑝 ∈ 𝑋 , and let 𝐿 = 𝜋−1 (𝜋 (𝑝)) be the fiber containing 𝑝 . We know that any two geometrically ruled surfaces
over𝐶 are birational, so Theorem 3.1 tells us that we should be able to obtain them from each other by blowups
and blowdowns. We will do exactly that here: we will blow up 𝑋 at 𝑝 , then blow down a different exceptional
curve, to obtain another geometrically ruled surface 𝑋 ′.
First let 𝑓 : Bl𝑝 𝑋 → 𝑋 be the blowup of 𝑋 at point 𝑝 , and let 𝐸 be the exceptional locus. Let 𝐿̃ be the strict
transform of 𝐿. 𝐿 must be birational to 𝐿̃, since the blowup is an isomorphism away from 𝑝 and the exceptional
locus. Since 𝐿 � P1 by hypothesis, then 𝐿 must be birational to 𝐿̃, but the only curve which is birational to P1
is P1 itself, hence 𝐿̃ � P1. We know that 𝐿2 = 0, since any two fibers of 𝜋 don’t intersect. (More rigorously,
take some function on 𝐶 vanishing at 𝜋 (𝑝); then as divisors, 𝑝 is linearly equivalent to a linear combination of
other points away from 𝑝; pulling back this function to 𝑋 , we will see that the fiber 𝐿 is linearly equivalent to
a linear combination of other fibers, so 𝐿2 is equal to the number of intersections of 𝐿 with fibers over points
away from 𝑝 , which must be 0.) Now we see that 𝑓 ∗𝐿 ∼ 𝐿̃ + 𝐸 (for example, look at set-theoretic preimage of
𝐿), so we compute that

0 = 𝐿2 = (𝑓 ∗𝐿)2 = (𝐿̃ + 𝐸)2 = 𝐿̃2 + 2𝐿̃ · 𝐸 + 𝐸2 = 𝐿̃2 + 2 − 1 =⇒ 𝐿̃2 = −1.

This means that the strict transform 𝐿̃ of 𝐿 is now an exceptional curve! So Bl𝑝 𝑋 has two exceptional curves:
the exceptional locus 𝐸, and also the strict transform 𝐿̃ of the fiber 𝐿.
We are now in position to apply Castelnuovo’s criterion (3.3). Since 𝐿̃ ⊂ Bl𝑝 𝑋 is an exceptional curve, we
realize Bl𝑝 𝑋 as the blowup of some other surface 𝑋 ′ at a point 𝑞, such that 𝐿̃ is the exceptional locus of the
blowup map 𝑔 : Bl𝑝 𝑋 � Bl𝑞 𝑋 ′ → 𝑋 ′. We just need to check that 𝑋 ′ is indeed a geometrically ruled surface
over 𝐶 . It’s already equipped with a map 𝜋 ◦ 𝑓 ◦ 𝑔−1 : (𝑋 ′ − 𝑔(𝐸)) → (𝐶 − 𝜋 (𝑝)), and all of these fibers are P1.
So we just want to understand 𝑔(𝐸); this should be the last fiber over 𝜋 (𝑝). Once again, 𝑔 is an isomorphism
away from 𝐿̃, which intersects 𝐸 at only one point, so 𝑔(𝐸) is at least birational to 𝐸 � P1, hence must be P1.
We can see that the strict transform 𝑔(𝐸) of 𝑔(𝐸) is just 𝐸, pretty much by the same argument. Therefore

𝑔∗ (𝑔(𝐸)) = 𝑔(𝐸) + 𝐿̃ = 𝐸 + 𝐿.

Squaring both sides, we find that

𝑔(𝐸)2 = 𝑔∗ (𝑔(𝐸))2 = 𝐸2 + 2𝐸 · 𝐿̃ + 𝐿̃2 = −2 + 2 − 1 = 0.

So 𝑔(𝐸) is viably the fiber over 𝜋 (𝑝) under the map we constructed 𝑋 ′ d 𝐶 . To see that it actually is the fiber,
we can use the valuative criterion (4.1) again. The map 𝑋 ′ d 𝐶 is defined on the dense open subset 𝑋 ′ − 𝑔(𝐸),
so it must be defined at the generic point. But the generic point of 𝑔(𝐸) is a codimension 1 point; the valuative
criterion of properness tells us that the map 𝑋 ′ d 𝐶 must still be defined there, hence on all of 𝑔(𝐸), and it’s
clear they must all map to 𝜋 (𝑝).

Example 3.6: Although the previous example gives us an interesting birational transformation, it is not clear
that the resulting ruled surface is actually different from the one we started with. It turns out that sometimes
we do get the same surface, but not always - we often get something new.
Let us denote by F𝑛 the 𝑛th Hirzebruch surface, given by Proj

P1
(OP1 ⊕ OP1 (𝑛)). These are ruled surfaces over

P1, pairwise nonisomorphic for 𝑛 ≥ 0. They are characterized by the section 𝜎 having 𝜎2 = 𝑛. Now, the strict
transform 𝜎 = 𝑓 ∗𝜎 , since it doesn’t pass through 𝑝 , the point being blown up. But when it’s blown down to 𝜎 ′,
the corresponding section of 𝑋 ′, we find that 𝑔∗𝜎 ′ = 𝜎 + 𝐿̃, from which we conclude that (𝜎 ′)2 = 𝑛 + 2 − 1 =

𝑛 + 1 ≠ (𝜎)2. So the birational map in the previous example transforms F𝑛 d F𝑛+1.

4 Appendix

Here, I’ll list the main results we will use, but won’t actually prove.
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Theorem 4.1 (Valuative criterion of properness): Let 𝑓 : 𝑋 → 𝑌 be a noetherian morphism of finite type
with 𝑋 noetherian. Let 𝐾 be a field. Then 𝑓 is proper if and only if for every valuation ring 𝑅 with fraction field
𝐾 and for every morphism of Spec𝐾 to 𝑋 and Spec𝑅 to 𝑌 forming the commutative diagram

Spec𝐾 𝑋

Spec𝑅 𝑌

,

there exists a unique map Spec𝑅 → 𝑋 making the diagram commute.

Spec𝐾 𝑋

Spec𝑅 𝑌

∃! .

Our main usage of the valuative criterion can be summarized as follows.

Corollary 4.2: Let 𝑓 : 𝑋 d 𝑌 be a rational map of projective varieties, proper where it is defined. Then 𝑓 is
defined on all codimension 1 points.

Proof. Since 𝑓 is defined on a dense open subset, it must be defined at the stalk of the generic point, which is just
Spec of the function field 𝐾 (𝑋 ). But the stalk at every codimension 1 point is a discrete valuation ring in 𝐾 (𝑋 ),
so the assumption that 𝑓 is proper where defined implies that 𝑓 must be defined at all codimension 1 points, i.e.
DVRs inside 𝐾 (𝑋 ). □

Theorem 4.3 (Zariski main theorem): Let 𝑓 : 𝑋 → 𝑌 be a birational projective morphism of noetherian
integral schemes with 𝑌 normal. Then every fiber of 𝑓 is connected.

Theorem 4.4 (Formal function theorem): Let 𝑓 : 𝑋 → 𝑌 be a projective morphism of noetherian schemes,
and let F be a coherent sheaf on 𝑋 . For any 𝑦 ∈ 𝑌 and 𝑖 ≥ 0, we have an isomorphism�(𝑅𝑖 𝑓∗F )𝑦 ∼−→ lim←−−

𝑛

𝐻 𝑖 (𝑋𝑛, F𝑛)

between the completion of the local ring at 𝑦 of the sheaf 𝑅𝑖 𝑓∗F , and the inverse limit of the 𝑖th cohomology
groups of the 𝑛th formal neighborhoods of the fiber over 𝑦. (More precisely, we define these neighborhoods to
be 𝑋𝑛 B 𝑋 ×𝑌 SpecO𝑌,𝑦/𝔪𝑛

𝑦 , and F𝑛 to be the sheaf F restricted to this fiber, i.e. given by the pullback of F
by the natural map 𝑋𝑛 → 𝑋 .)
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